
Operating System
Deadlocks

UNIT-IV

 Prepared By
 Alok Haldar
 Assistant professor
 Department of Computer Science & BCA
 Kharagpur College

 Banker’s Algorithm

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Multiple instances.

 Each process must a priori claim maximum use.

 When a process requests a resource it may
have to wait.

 When a process gets all its resources it must
return them in a finite amount of time.

Data Structures for the Banker’s Algorithm

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Let n = number of processes, and m = number of resources types.

Available : A vector of length m indicates the number of available resources
of each type. If Available[j] = k, then k instances of resource type Rj are
available.
• Max : An n × m matrix defines the maximum demand of each process.
If Max[i][j] equals k, then process P i may request at most k instances of
resource type Rj .
• Allocation : An n × m matrix defines the number of resources of each type
currently allocated to each process. If Allocation[i][j] = k, then process
Pi is currently allocated k instances of resource type Rj .
• Need : An n × m matrix indicates the remaining resource need of each
process. If Need[i][j] = k, then process Pi may need k more instances
of resource type Rj to complete its task.
 Note that Need[i][j] = Max[i][j] − Allocation[i][j].

Safety Algorithm

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

1.Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false for i = 1,2,3, …, n.

2.Find and i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3.Work = Work + Allocationi

Finish[i] = true
go to step 2.

4.If Finish [i] == true for all i, then the system is in a safe
state.

Resource-Request Algorithm for Process Pi

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Let Requesti be the request vector for process P i . If Request i [j] == k,
then process Pi wants k instances of resource type Rj . When a request
for resources is made by process Pi ,

 then the following actions are taken:

 1. If Requesti ≤ Needi , go to step 2. Otherwise, raise an error condition,
since the process has exceeded its maximum claim.

 2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since the
 resources are not available.
 3. Have the system pretend to have allocated the requested resources to
 process Pi by modifying the state as follows:
 Available = Available – Requesti ;
 Allocationi = Allocationi + Requesti ;
 Needi = Needi – Requesti ;
If the resulting resource-allocation state is safe, the transaction is com-
pleted, and process P i is allocated its resources. However, if the new

state
is unsafe, then P i must wait for Request i , and the old resource-allocation
state is restored.

Example of Banker’s Algorithm

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

consider a system with five processes P0 through P4 and three resource
types A, B, and C. Resource type A has ten instances, resource type B has
five instances, and resource type C has seven instances.
Suppose that, at time T0 , the following snapshot of the system
has been taken:

 Allocation Max Available
 A B C A B C A B C
 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Example (Cont.)

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

The content of the matrix Need is defined to be Max − Allocation and is as
follows:
 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria.

Example P1 Request (1,0,2) (Cont.)

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Suppose now that process P1 requests one additional instance of resource
type A and two instances of resource type C, so Request

1
 = (1,0,2).

To decide whether this request can be immediately granted, we first check that
Request

1
 ≤ Available—that is, (1,0,2) ≤ (3,3,2), which is true.

Allocation Need Available
 A B C A B C A B C
P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence <P1, P3, P4,
P0,P2> satisfies safety requirement.

Can request for (3,3,0) by P4 be granted?

Can request for (0,2,0) by P0 be granted?

Deadlock Detection

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Allow system to enter deadlock state

Detection algorithm

Recovery scheme

Several Instances of a Resource Type

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

• Available : A vector of length m indicates the number of available resources
 of each type.
• Allocation : An n × m matrix defines the number of resources of each type
 currently allocated to each process.
• Request : An n × m matrix indicates the current request of each process.
 If Request[i][j] = k, then process Pi is requesting k more
 instances of resource type Rj .

Detection Algorithm

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

1. Let Work and Finish be vectors of length m and n, respectively. Initialize
 Work = Available. For i = 0, 1, ..., n–1, if Allocation

 i
 = 0, then

 Finish[i] = false. Otherwise, Finish[i] = true.
2. Find an index

i
such that both

 a. Finish[i] == false
 b. Request

 i
 ≤ Work

 If no such i exists, go to step 4.
3. Work = Work + Allocation i
 Finish[i] = true
 Go to step 2.
4. If Finish[i] == false for some i, 0 ≤ i < n, then the system is in a deadlocked
 state. Moreover, if Finish[i] == false, then process P i is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the
system is in deadlocked state.

Example of Detection Algorithm

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

 Snapshot at time T0:

AllocationRequestAvailable
 A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2
 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

Example (Cont.)

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 P2 requests an additional instance of type C.

 Request
 A B C
 P0 0 0 0

 P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2
 State of system?

Can reclaim resources held by process P0, but insufficient resources
to fulfill other processes; requests.

 Deadlock exists, consisting of processes P1, P2, P3, and P4.

Detection-Algorithm Usage

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 When, and how often, to invoke depends on:
How often a deadlock is likely to occur?
 How many processes will need to be rolled back?

one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and
so we would not be able to tell which of the
many deadlocked processes “caused” the
deadlock.

Recovery from Deadlock: Process Termination

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle
is eliminated.

 In which order should we choose to abort?
Priority of the process.
 How long process has computed, and how much longer

to completion.
 Resources the process has used.
 Resources process needs to complete.
 How many processes will need to be terminated.
 Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart
process for that state.

 Starvation – same process may always be
picked as victim, include number of rollback
in cost factor.

Combined Approach to Deadlock Handling

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Combine the three basic approaches
prevention
 avoidance
 detection

 allowing the use of the optimal approach for each of
resources in the system.

 Partition resources into hierarchically ordered classes.

 Use most appropriate technique for handling deadlocks
within each class.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

